

AP Biology Year at a Glance (YAG) 2021-2022

	First Semester	Second Semester				
1st Nine Weeks – 40 days		3 rd Nine Weeks – 45 days				
Big Idea 1:	Unit 1: Evolution (16 days)	Big Idea 1:	Unit 6: Heredity (14 days)			
Essential	Student will be able to:	1A1, 1A2,	Describe Mendel's law of segregation			
Knowledge	State the two major points Darwin made	1A3, 1A4,	Distinguish between genotype and			
(EK):	in <i>The Origin of Species</i> concerning the	1C2, 1C3,	phenotype, heterozygous and homozygous,			
1A1, 1A2, 1A3,	Earth's biota. Explain what Darwin meant	1D1, 1D2	dominant and recessive traits. Use the laws			
1A4, 1B1, 1B2,	by the principle of common descent and "descent with modification". Explain what	Dig Idea 2.	of probability to calculate the chances of an individual having a specific genotype or			
1C1, 1C2, 1C3	evidence convinced Darwin that species	Big Idea 2: 2C1, 2C2,	phenotype. Complete genetics problems			
Big Idea 2:	change over time. Using some	2D1, 2D2,	related to the condition and patterns of			
2B1, 2B2, 2B3,	contemporary examples, explain how	2D3, 2D4,	inheritance discussed. Understand the use			
2C1, 2C2, 2E2	natural selection results in evolutionary	2E1, 2E2, 2E3	of the Chi Square test in studying data from			
	change.		genetic crosses.			
Big Idea 3:		Big Idea 3:				
3D1, 3D2, 3D3,	Unit 2: Biochemistry (12 days)	3A1, 3B1,	Unit 7: Molecular Genetics (10 days			
3D4, 3E1	Identify the 6 major elements found in	3B2, 3C2, 3C3	Describe the structure of DNA and explain			
Dia Idaa 4	living things. Describe the role of carbon in	Dialdes 4	what kind of chemical bond connects the			
Big Idea 4: EK: 4A1, 4A2,	molecular diversity, its characteristics, and its forms of organization structures.	Big Idea 4: 4C2	nucleotides of each strand and what holds the two strands together. Describe the			
4A3, 4A4, 4C1,	Define monomer, polymer, hydrolysis, and	462	process of DNA replication. Explain the			
4B4, 4C3, 4C4	dehydration synthesis and give specific		processes of transcription, translation and			
121, 100, 101	examples from each of the 4		mRNA editing. Given a sequence of bases in			
	macromolecule groups. Distinguish		DNA, predict the corresponding codons			
	between endergonic/exergonic reactions,		transcribed on mRNA and the			
	anabolic/catabolic pathways,		corresponding anticodons of tRNA. Explain			
	kinetic/potential energy, and open/closed		how the genetic code is redundant and			
	systems. Describe an enzyme in terms of		universal. Using the <i>trp operon</i> as an			
	its function in chemical reactions and		example, explain the concept of an operon			
	substrate/product relationships.		and the function of the operator, repressor and corepressor. Distinguish between			
	Unit 3: Cellular Biology (12 days)		structural and regulatory genes. Describe			
	Identify the structure, composition, and		the <i>lac operon</i> functions. Understand how			
	function of cell organelles. Compare and		restriction enzymes and gel electrophoresis			
	contrast the structures of eukaryotic and		are used to isolate DNA fragments			
	prokaryotic cells. Identify the components					
	of the fluid mosaic model of the cell		Unit 8: Population Genetics (7 days)			
	membrane. Compare isotonic		Write the general Hardy-Weinberg			
	(isoosmotic), hypertonic (hyperosmotic),		theorem, use it to calculate allele and			
	and hypotonic (hypoosmotic) solutions		genotype frequencies. Explain how genetic			
	and predict the path of movement of water and solutes in given examples. Relate		drift, gene flow, mutation, nonrandom mating and natural selection can cause			
	osmotic potential to solute concentration		microevolution. Give the cause of genetic			
	and water potential. Describe the three		variation in a population. Explain the			
	main stages of cell signaling. Describe		concept of relative fitness and its role in			
	how signal information is transduced into		adaptive evolution. Describe what			
	cellular responses in the cytoplasm and in		selection acts on and what factors			
	the nucleus.		contribute to the overall fitness of a			
			genotype. Distinguish between anagenesis			
			and cladogenesis. Distinguish between			
			prezygotic and postzygotic isolating mechanisms.			
			methanisms.			

AP Biology Year at a Glance (YAG) 2021-2022

2nd Nine Weeks – 43 days

4th Nine Weeks – 45 days

Big Idea 2: 2A1, 2A2, 2A3, 2C1, 2C2, 2D1, 2D2, 2D3

Big Idea 3: 3A1, 3A2, 3A3, 3A4, 3C1, 3C2

Unit 4: Celular Energetics (12 days) **Describe** the role of respiration in the cell's energy cycle. **Define** cellular respiration, glycolysis, citric acid cycle, and electron transport. **Identify** the general reactants and products of glycolysis, citric acid cycle and oxidative phosphorylation. **Compare** the end products of aerobic and anaerobic respiration and identify the types of organisms employing each. **Summarize** the light reactions with an equation and describe where they occur. **Describe** important differences in chemiosmosis between oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts. **Summarize** the carbon-fixing reactions of the Calvin-Benson cycle and describe changes that occur in the carbon skeleton of the intermediates.

Unit 5: Cellular Reproduction (11 days)

List the stages of the cell cycle and describe the sequence of events and activities of these stages. List the phases of mitosis proper, describe the events characteristic of each phase and be able to recognize a diagram or micrograph of each stage. **Identify** factors which stimulate or inhibit cell division. Explain how cancerous cell division is different from normal cell activity. **Distinguish** between sexual and asexual reproduction. Compare the chromosomal contents of haploid and diploid cells. **Indicate** where mitosis and meiosis would occur in a given organism. **List** the phases of meiosis, describe the events that characterize each phase and be able to recognize these phases in diagrams.

Fall Semester Final Exam Review and Exams (6 days)

Big Idea 2: 2C1, 2C2, 2D1, 2D2, 2D3, 2D4, 2E1, 2E2, 2E3

Big Idea 4:

4A5, 4A6, 4B1, 4B2, 4B3, 4B4, 4C3, 4C4

Unit 9: Simple Life Forms (16 days) **Distinguish** between phylogeny and systematics. **Distinguish** between systematics and taxonomy. **Define** the parts and describe the interrelationships within a cladogram. **Explain** how a cladogram is constructed. **Compare** DNA and RNA viruses; identify the structural components and compare the reproductive cycles of viruses. **Describe** the general characteristics of bacteria. **Explain** the significance of bacteria in the earth's ecosystem.

Unit 11: Ecology (8 days)

Distinguish between the six increasingly comprehensive levels of ecological study. **Distinguish** between the exponential model and the logistical model of population growth (include a graph that illustrates both models). **Compare and contrast** K-selection and r-selection with reference to selection for life history traits. **Explain** how age structure, generation time, and sex structure of populations can effect population growth. **Describe** the recorded human population growth and discuss the estimates for human carrying capacity. **Discuss** the modes of interspecific interactions between species and how they affect population density. **Distinguish** between a food chain and a food web. Include a list of the 5 trophic levels. Compare a "dominant species" to a "keystone species" and give an example how each can impact a community. **Compare and contrast** primary succession and secondary succession. **Explain** the two components that contribute to the biodiversity of a community. **List** the 4 biogeochemical cycles and describe the importance of each within an ecosystem. **Explain** 3 impacts humans have on ecosystems and describe what is meant by biological magnification with reference to toxins.

Advanced Placement Exam Preparation and Exam (13 days)

Spring Semester Final Exam Review and Exams (6 days)

AP Biology Year at a Glance (YAG) 2021-2022

Resources

1st Nine Weeks	2nd Nine Weeks	3rd Nine Weeks	4th Nine Weeks
Biology Campbell 10 Edition			